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Abstract
We consider a model of random copolymer adsorption in which an n-edge self-
avoiding walk in three dimensions interacts with a plane defining a half-space
to which the walk is confined. Each vertex of the walk is randomly labelled A

with probability p or B with probability 1 − p, and only vertices labelled A are
attracted to the surface plane. The system is quenched, i.e. the labelling is fixed
and then the thermodynamic properties are computed. We use Monte Carlo
methods to investigate the behaviour of this system. We observe self-averaging
of the energy as n increases, and investigate the location of the adsorption
transition for various values of p. In addition, we compare the behaviour of this
system with that of a homopolymer adsorbing at a randomly heterogeneous
surface consisting of two types of sites, only one of which interacts with the
monomers of the polymer.

PACS numbers: 05.50.+q, 82.70.−y

1. Introduction

The adsorption of homopolymers at an impenetrable surface is a well-studied problem and
one of the useful models is a self-avoiding walk on a lattice, confined to a half-space and
interacting with the confining plane (see, e.g., Hammersley et al 1982, De’Bell and Lookman
1993, Hegger and Grassberger 1994). This model is known to have a phase transition (in the
thermodynamic limit) corresponding to adsorption.

Much less is known about copolymer adsorption (in which only one of two comonomers
interacts with the surface, say), although the problem has been studied by several groups
(Cosgrove et al 1990, Wang et al 1993, Joanny 1994, Sommer and Daoud 1995, Sommer
et al 1996, Whittington 1998, Moghaddam et al 2000). In the case where the copolymer is
random the most interesting case is quenched randomness where the sequence of comonomers
is fixed during the computation of thermodynamic quantities, and the logarithm of the partition
function is averaged over the quenched comonomer sequences. Grossberg et al (1994) have
considered periodic quenched randomness, and the case of non-periodic quenched randomness

0305-4470/02/010033+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK 33

http://stacks.iop.org/ja/35/33


34 M S Moghaddam and S G Whittington

has been studied by several groups using a variety of techniques (Garel et al 1989, Guttman
and Chakraborty 1994, 1995, Bolthausen and den Hollander 1997, Biskup and den Hollander
1999, Sumithra and Baumgaertner 1998, 1999, Orlandini et al 1999). In particular, for the self-
avoiding walk model of adsorption of a quenched random copolymer, Orlandini et al (1999)
proved that the system has a phase transition, and is thermodynamically self-averaging.

In this paper we use multiple Markov chain Monte Carlo methods to investigate the
adsorption of a random copolymer at a homogeneous surface (section 2) and compare
this behaviour with that of a homopolymer adsorbing at a randomly heterogeneous surface
consisting of two kinds of sites, only one of which interacts with the monomers of the
homopolymer (section 3). In section 4 we compare the Monte Carlo results for the quenched
random copolymer and the quenched random surface with results for an annealed model (in
which the partition function is averaged before the logarithm is taken to construct the free
energy). Finally, in section 5 we discuss our results and point out some open questions and
possible directions for further research.

2. Adsorption of a random copolymer

The model which we consider in this section is a particular case of that studied by Orlandini
et al (1999). We consider an n-edge self-avoiding walk on the simple cubic lattice Z 3. The
vertices of the walk are numbered i = 0, 1, . . . , n and we fix the 0th vertex at the origin. All
vertices are constrained to have non-negative z-coordinate, and the plane z = 0 is the plane
at which adsorption can occur. The vertices i = 1, 2, . . . , n are randomly and independently
labelled A or B such that the probability of a vertex being labelled A is p. Let cn(vA|χ) be the
number of n-edge walks with these constraints, having a labelling χ , and having vA vertices
labelled A in the plane z = 0. The partition function for a fixed labelling is

Zn(α|χ) =
∑
vA

cn(vA|χ)eαvA (2.1)

and the quenched average free energy κ̄(α) is

κ̄(α) = lim
n→∞〈n−1 log Zn(α|χ)〉 (2.2)

where 〈· · ·〉 represents an average over the labellings χ . Of course, κ̄(α) depends on the
parameter p but we shall normally suppress this dependence in our notation. Orlandini et al
(1999) showed that the limit exists in (2.2) for all α < ∞ and that, for all α � 0, κ̄(α) is equal
to κ̄(0) ≡ κ3, the connective constant of the simple cubic lattice. Define αq such that

αq = max[α|κ̄(α) = κ̄(0)] (2.3)

so that αq is a singular point of κ̄(α). The walk is desorbed for all α < αq and adsorbed for all
α > αq. Since αq is at least as large as the corresponding critical value of α for homopolymer
adsorption (all vertices coloured A) we know that αq is strictly positive.

Although these results give interesting qualitative information about the temperature
dependence of the free energy they say little about the location of the transition (and its
dependence on composition) and nothing about the order of the transition. We have investigated
these questions using Monte Carlo methods.

Since the system is strongly interacting we have used a multiple Markov chain approach in
which one samples at a variety of different temperatures at the same time and ‘swaps’
configurations between different temperatures with swap probabilities chosen so that the
limit distribution of the process is the product of the Boltzmann distributions at the individual
temperatures. The method was originally invented by Geyer (1991) and was first used in
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Figure 1. The mean number of A-vertices in the surface, per edge of the walk, for the random
copolymer case, for p = 1/2, n = 50(∗), 100 (+), 200 ( �) and 400 (×).

polymer statistical mechanics by Tesi et al (1996). Details can be found in those references.
The underlying (symmetric) Markov chain used was a combination of the pivot algorithm (Lal
1969, Madras and Sokal 1988) and local moves (Verdier and Stockmayer 1962).

For any fixed value of p, 0 � p � 1, the quenched average free energy for finite n, κ̄n(α),
is given by

κ̄n(α) =
2n∑

j=1

pmj (1 − p)n−mj n−1 log Zn(α|χj ) (2.4)

where χ j is the jth labelling, mj is the number of vertices labelled A in this labelling, and the
sum is over the 2n possible labellings. Differentiating with respect to α gives the quenched
average energy per edge, i.e. the mean number of A vertices in the surface divided by n. That
is

∂κ̄n(α)

∂α
=

2n∑
j=1

pmj (1 − p)n−mj n−1

[∑
vA

vAcn(vA|χj)eαvA∑
vA

cn(vA|χj)eαvA

]
= 〈vA(α)〉

n
(2.5)

where the final angular brackets represent an average over configurations at fixed labelling,
followed by an average over labellings.

We have calculated 〈vA(α)〉/n and the corresponding quenched average heat capacity

Cn(α) = ∂2κ̄n(α)/∂α2 (2.6)

for various values of n and α. In each case the energy and heat capacity were calculated for a
fixed labelling (monomer sequence) and then averaged over about 40 different labellings. At
larger values of n, fewer labellings were required, consistent with the fact that the system is
thermodynamically self-averaging in the n → ∞ limit. In figure 1 we show the α-dependence
of 〈vA(α)〉/n when p = 1/2, for n = 50, 100, 200 and 400. For small α the values of 〈vA(α)〉/n

are small, and decrease as n increases. The curves rise sharply over a small range of α values
and the rise becomes steeper as n increases. Figure 2 shows the corresponding behaviour for
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Figure 2. The heat capacity Cn (α) for the random copolymer case when p = 1/2, for n = 50 (∗),
100 ( �), 200 (+) and 400 (×).

Cn(α). The heat capacity peaks become higher and narrower as n increases, consistent with a
second-order phase transition. We have checked this by examining histograms of the energy
and see no evidence for a two-peaked distribution at any values of α. This is evidence that
the adsorption transition is of second order as is believed to be the case for a homopolymer
(De’Bell and Lookman 1993, Hegger and Grassberger 1994).

In figure 3 we show 〈vA(α)〉/n at n = 400 for three values of p. As p increases the value of
α at which 〈vA(α)〉/n begins to increase rapidly (corresponding to a peak in the heat capacity)
moves to smaller values of α as expected. 〈vA(α)〉/n tends to p at large α, and so the height
of the plateau increases as p increases.

We have plotted the locations of the heat capacity peaks, αn, against n−φ for various values
of p and φ. For each value of p we obtain roughly linear behaviour for values of φ in the
range φ = 0.5 to 0.52 but we see no evidence that φ depends on p. It seems likely that φ

retains the homopolymer value (about 0.5, Hegger and Grassberger (1994)) when randomness
is introduced. However, our evidence for this is not very strong and further work on this
question would be useful.

For this problem the free energy is known to be self-averaging in the n → ∞ limit
(Orlandini et al 1999), but this says little about the extent of self-averaging for finite values of
n. To investigate this we have calculated the energy (averaged over conformations) at several
fixed labellings. That is, we calculated

〈vA(α|χ)〉 =
∑

vA
vAcn(vA|χ)eαvA∑

vA
cn(vA|χ)eαvA

(2.7)

as a function of α and n for several fixed values of χ . With n and α fixed there will be a
distribution of values of 〈vA(α|χ)〉 and we can estimate the variance of this distribution as

V (α, n) = (s − 1)−1
s∑

j=1

(〈vA(α|χj )〉 − 〈vA(α|χj )〉)2 (2.8)
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Figure 3. The α-dependence of 〈vA(α)〉/n for the random copolymer case when n = 400 and p =
0.3 (∗), 0.5 (+) and 0.9 (×).
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Figure 4. The α-dependence of the variance of 〈vA(α|χ)〉/n for the random copolymer for n =
50 (∗), 100 (×), 200 (+) and 400 ( �).

where the sum runs over s randomly chosen labellings and the bar represents a sample average
over labellings. In figure 4 we show the α-dependence of V (α, n)/n2, the estimated variance
of 〈vA(α|χ)〉/n, for various values of n. The self-averaging is rapid (i.e. the variance is small
even for small values of n) at small values of α. At larger values of α, close to and beyond
the adsorption transition, larger values of n are required before we see a reasonable degree of
self-averaging.
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Figure 5. The α-dependence of 〈vA〉/n for the random surface case when n = 200 and p = 0.3
(+), 0.4 ( �), 0.5 (◦), 0.6 (•), 0.7 (�), 0.8 (×) and 0.9 ( � and ∗, two independent sets of data).

3. Adsorption of a polymer at a random surface

In this section we turn to the problem of adsorption of a homopolymer at a random surface.
The sites of the surface are of two types, only one of which interacts with the monomers of
the polymer. Once again the polymer is modelled as a self-avoiding walk on the simple cubic
lattice, starting at the origin and confined to the half-space z � 0. The vertices of the surface
plane (z = 0) are labelled A and B, uniformly and independently, and the vertices of the walk
only interact with surface vertices labelled A. We write p for the probability that a surface
vertex is labelled A and χ for a particular (random) labelling of the surface vertices. We shall
label the origin as A and write vA + 1 for the number of vertices of the walk at vertices of
the surface labelled A. We call vA the number of A-visits and write cn(vA|χ) for the number
of self-avoiding walks (in the half-space defined above) with n edges and vA A-visits, given
a surface labelling χ . We have used Monte Carlo methods to estimate the energy (i.e. the
expected value of vA) and heat capacity (the variance of vA) for given χ , and formed averages
over χ to estimate the quenched average energy and heat capacity. The methods used were
essentially identical to those described for the random copolymer in section 2.

In figure 5 we show the mean fraction of A-visits, 〈vA〉/n, as a function of α, for n = 200,
for various values of p between p = 0.3 and 0.9. The values of 〈vA〉/n increase as α increases,
to values which are clearly larger than p (in contrast to the case for the random copolymer
where the horizontal asymptote is p). This is because, in the random surface case for p > pc,
where pc is the site percolation threshold for the square lattice, there is a positive probability
that the origin is a member of an infinite cluster of A vertices and the walk can arrange itself on
the lattice so as to follow A-vertices in this percolating cluster. For p < pc there is no infinite
percolating cluster but the walk can still optimize the number of vertices in z = 0 which are A

vertices, to optimize the energy. Thus the horizontal asymptote can still be larger than p.
Figure 6 shows the α-dependence of the quenched average heat capacity Cn(α) =

n−1
[〈v2

A〉 − 〈vA〉2
]

for n = 50, 100, 200 and 400, for p = 0.8. As n increases the peaks
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Figure 6. The α-dependence of the heat capacity Cn (α) for the random surface when p = 0.8,
n = 50 ( �), 100 (×), 200 (∗) and 400 (+).

grow in height and become sharper, consistent with an adsorption transition. Similar trends
are observed for other values of p. In figure 7 we show the α-dependence of Cn (α) for
n = 50 for various values of p. The peak position moves to smaller values of α as p increases,
so that adsorption occurs at smaller α as p increases. There appears to be an adsorption
transition for every value of p > 0, including values for p < pc. It is interesting to compare
the random surface and random copolymer cases and we show heat capacities for the two
cases in figure 8 for p = 0.3, 0.5 and 0.9. The heat capacity peaks are considerably higher
for the random surface case than for the random copolymer case. There is some evidence that
the peak positions occur at slightly smaller values of α for the random surface case (than for
the random copolymer) and this is more marked at lower values of p. Whether or not this
persists in the infinite n limit is an open question.

Sumithra and Baumgaertner (1998) have reported evidence that the crossover exponent
depends on p, at least for p � 0.6. However, our data can be reasonably represented by a value
of φ around 0.5 or 0.52, independent of p. If the crossover exponent is p-dependent then our
data are not sufficiently precise to see this. Where we can compare our raw data with those of
Sumithra and Baumgaertner, the agreement seems to be quite good.

4. The annealed case

In the annealed version of the problem the operations of taking the logarithm and averaging
over labellings are reversed in computing the free energy. That is, the annealed free energy,
κa

n (α), is given by

κa
n (α) = n−1 log〈Zn(α|χ)〉 (4.1)

where the angular brackets denote an average over the labellings χ . By the arithmetic mean–
geometric mean inequality

κa
n (α) � κ̄n(α) (4.2)
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Figure 7. The α-dependence of the heat capacity Cn (α) for the random surface when n = 50, p =
0.3 (×), 0.4 (+), 0.5 (∗), 0.6 (�), 0.7 (•), 0.8 (◦), 0.9 (�) and 1.0 ( �).
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Figure 8. The heat capacity Cn (α) for n = 400 for various values of p. For p = 0.3, random
copolymer ( �), and random surface (∗). For p = 0.5, random copolymer ( �), and random
surface (×). For p = 0.9, random copolymer (◦), and random surface (+).

so that the annealed version of the problem gives an upper bound to the quenched average free
energy. For the two problems considered in this paper, the random copolymer and the random
surface, the annealed version of the problem is identical. In the random copolymer problem
annealing is a convenient mathematical approximation which yields an upper bound but in the
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Figure 9. The α-dependence of 〈vA(α)〉/n for n = 100, p = 1/2, for the annealed (×), quenched
random surface (+) and quenched random copolymer (∗).

random surface problem there is a direct physical model whose free energy is the annealed free
energy. Up to now we have considered the case where the surface, once randomly labelled,
is fixed. However, it is possible to consider the case of a mobile or deformable surface where
the labelling can change to accomodate the adsorption process. That is, the surface sites can
rearrange to optimize their interaction with the adsorbing polymer.

The annealed case can be related to the homopolymer adsorption case as follows. Suppose
that cn(v) is the number of walks (unlabelled) with n edges, having v+1 vertices in the surface.
If vertices (of either the walk or surface) are randomly labelled to be of type A with probability
p the average of the partition function can be written as

〈Zn(α|χ)〉 =
∑

v

∑
vA

cn(v)

(
v

vA

)
eαvApvA(1 − p)v−vA . (4.3)

Performing the binomial summation gives

〈Zn(α|χ)〉 =
∑

v

cn(v)[peα + (1 − p)]v (4.4)

which can be written as

〈Zn(α|χ)〉 =
∑

v

cn(v)eγ v (4.5)

where γ = log[peα +(1−p)]. Hence the average of the partition function can be written as the
partition function of a homopolymer interacting with a homogeneous surface with interaction
parameter γ . The behaviour of the annealed case can be obtained from the pure homopolymer
case by the transformation derived above. In figure 9 we show the α-dependence of the mean
fraction of visits 〈vA〉/n for n = 100, p = 1/2, for the annealed case (top curve), the quenched
random surface (centre curve) and the quenched random copolymer (lower curve). Note that
the annealed values are higher than those of the two quenched cases, but much closer to the
quenched random surface case.
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5. Discussion

We have used Monte Carlo methods to investigate the adsorption at a homogeneous surface of
a quenched random copolymer containing two comonomers A and B where only one of them
(A, say) interacts with the surface. We have investigated the temperature dependence of the
energy and heat capacity as a function of the proportion of A monomers, and have numerically
investigated self-averaging of these properties as a function of temperature, and the length of
the polymer. These results have been compared with corresponding results for a homopolymer
adsorbing at a spatially heterogeneous surface, consisting of two types of sites, only one of
which interacts with the monomers of the polymer. We have also compared our Monte Carlo
results with those from an annealed model, which gives a bound on the free energies of both
the quenched models studied.

The annealed model gives a lower bound on the location of the adsorption transition
for both quenched models which we have studied. Our Monte Carlo results suggest that
the locations are very similar for all the three models. Whether or not the locations of the
transitions are identical remains an open question.

Acknowledgment

This research was supported, in part, by NSERC of Canada.

References

Biskup M and den Hollander F 1999 Ann. Appl. Prob. 9 668
Bolthausen E and den Hollander F 1997 Ann. Prob. 25 1334
Cosgrove T, Finch N A and Webster J R P 1090 Macromolecules 23 1334
De’Bell K and Lookman T 1993 Rev. Mod. Phys. 65 87
Garel T, Huse D A, Leibler S and Orland H 1989 Europhys. Lett. 8 9
Geyer C J 1991 Markov chain Monte Carlo maximum likelihood Computing Science and Statistics: Proc. 23rd Symp.

on the Interface ed E M Keramidis (Fairfax Station: Interface Foundation) pp 156–63
Grosberg A, Izrailev S and Nechaev S 1994 Phys. Rev. E 50 1912
Gutman L and Chakraborty A K 1994 J. Chem. Phys. 101 10074
Gutman L and Chakraborty A K 1995 J. Chem. Phys. 103 10733
Hammersley J M, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 15 539
Hegger R and Grassberger P 1994 J. Phys. A: Math. Gen. 27 4069
Joanny J-F 1994 J. Physique II 4 1281
Lal M 1969 Mol. Phys. 17 57
Madras N and Sokal A 1988 J. Stat. Phys. 50 109
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